## Chapter 4



## INTRODUCTION

Labour cost remains one of the most important elements of cost even today, that requires close attention of management. The proportion of labour cost in some industries is as high $50 \%$ of the total cost of production. Looking to the importance a labour cost, many American, Japanese, Korean and European companies are establishing their automobile plants in India to save labour cost, as labour is very cheap in India.
圊 Similarly many foreign companies get their computer work done in India to save labour cost. (This is called outsourcing). Perhaps it is more difficult to control labour cost than even the material cost due to a number of reasons.
埌 Material being an inanimate thing can be controlled and even stored when not required. Workers are however, human beings having their own likes and dislikes. Secondly, labour is a perishable commodity and cannot be stored. It has to be utilized as soon as it is available.

## DIRECT LABOUR AND INDIRECT LABOUR

Labour is classified into two categories: Direct and Indirect. Workers who are directly engaged in production and whose wages can be identified with the particular jobs or cost units, constitute direct labour. Wages paid to them are called Direct wages. In other words, wages which can be identified with and allocated to cost centres or cost units is direct wages.
Other employees, who only assist the production work and whose wages cannot be allocated directly to jobs or cost units, fall in the category of indirect labour. For example, salary of foremen, supervisor, etc. are included in indirect wages. Such indirect wages are part of factory overheads.

## DIRECT LABOUR AND INDIRECT LABOUR

The definition of direct and indirect wages by the English Institute of Cost and Management Accountants will be of interest to students:

- Direct Wages (Direct Labour Cost): Wages (labour cost) which can be identified with and allocated to, cost centres or cost units.
- Indirect Wages (Indirect Labour Cost): Wages (labour cost) which cannot be allocated but which can be apportioned to or absorbed by, cost centres or cost units.
The labour cost depends upon two important facts: (1) Time devoted by the workers and (2) Rate of wages at which they are paid.


| (1) | Hraces pitial lo those who are direetly coninceled wifh production in aty job, procestis depariment or unit are callea direct wrages ecg whages paid ig <br>  | (1) | bages patid to dhose who are hol directly bui orly indirectly connceted with production of ayy job, process or unit are called indirect wages. e. 呰. wapes paid 10 superytitor or toremisn. |
| :---: | :---: | :---: | :---: |
| (7) | Direct wates ean be easily jdentified with a particular jol or unit of production. | (2) | Inditect wages, cannol be actributed direetly to any job, promess or unit of production. |
| (3) | Only one job, process, deputrt ment or arit gets the buncilit af dimet wages and so il can be directly charged to that iob or process. | (3) | The benefit of indirect wares is awajable to more than one jub, process or unit of production, it has to be apportioned over ithem. |
| (4) | Disect wages is a part of prime cosl. | (4) | Indireel wheres is a part of factory owerherds |
| (5) | The direct worker, makes the physical changes in items produced like size, colour, structure, quality by himself directly. | (5) | The indirect worker, does not make such physieal changes but simply tuelps in doing it. |

## TIME RECORDING

Recording of time has two different aspects, viz. Time Keeping and Time Booking.

- In strict sense, Time keeping refers to recording of the workers' time of arrival and departure, i.e., the total time that the worker has spent in factory. Some form of time keeping is essential for disciplinary purposes. Whether he is paid on the basis of time or on the basis of the quantum of work that he has put in, it is necessary that he should be punctual or else he would create disturbance to others. Secondly, if workers are paid on time basis it is necessary to have a record of their timings in order to calculate their wages, overtime and so on.
- Time booking is another aspect of time recording and refers to the recording of time that the worker spends on various jobs. This is done with help of job cards in which the time of starting work on each job by the worker and the time of finishing it are recorded Time booking helps the management in checking idle time of workers. Secondly allocation of overheads on the basis of time is possible.


## TIME KEEPING SYSTEMS

Time-keeping system may be (1) Manual or (2) Mechanical.
A. Manual System:
I. Daily Muster Roll
II. Disc Method
B. Mechanical System:
I. Time Recording Clocks
II. Dial Time Recorders

## TIME BOOKING CARDS

| TIME CARD |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. $\qquad$ <br> Name $\qquad$ |  |  | Week ending $\qquad$ <br> Department $\qquad$ |  |  |  |
| Day | Forenoon |  | Afternoon |  | Hours |  |
|  | In | Out | In | Out | Regular | Overtime |
| Mondy |  |  |  |  |  |  |
| Tuesday |  |  |  |  |  |  |
| Wednesday |  |  |  |  |  |  |
| Thursday |  |  |  |  |  |  |
| Friday |  |  |  |  |  |  |
| Saturday |  |  |  |  |  |  |
| Sunday |  |  |  |  |  |  |
| Total Wage <br> Less : Dedu <br> Net Amoun | abl |  |  |  | ed |  |

## JOB CARDS



## Difference between Time Card and Job Card :

|~~
(1) Time card is separately prepared for each worker for recording time of his arrival and departure in the factory. There are as many time cards as there are workers.
(2) On time card, not only the time of his arrival and departure is recorded, but even the time devoted by worker to various jobs is also recorded.
(3) It is possible to know the total time during which worker was present from the time cards and calculate his wages.
(1) Job card is separalety prepared for each job There are as many job cards as the number of jobs.
(2) On job card, the time given by various worker on a particular job is recorded.
(3) From the job card, it is possible to know the exact time which a job has taken to complete. So the total direct wages of that job can be determined.


## TIME WAGE SYSTEM

A system in which a worker is paid on the basis of time devoted by the worker is known as Time Wage System, i.e., time is the basis of payment here, The rate may be so much per hour, day, week, fortnight or a month. The worker is guaranteed a definite sum of money for a definite period of time.

## Time Wage $=$ Time Taken $\times$ Wage Rate <br> $$
\mathbf{E}=\mathbf{T} \times \mathbf{R}
$$

## Where, E = Earnings, T = Time Taken, R = Rate per hour

The system is suitable in following cases: (i) Where the quality of ultimate product is more important, (ii) where the rate of production is more dependent on machines rather than on workers, (iii) where it is not possible to measure the work put in by the worker, e.g., a teacher, (iv) where the work is irregular and of different types, (v) where the worker is untrained or is an apprentice.

## ADVANTAGES OF TIME WAGE SYSTEM

It is simple to understand and easy to calculate the amount of wages payable to a worker. Quality of work is maintained, as the worker is not in a hurry to increase his output.
As the worker is not hard pressed for time, he looks after, proper maintenance of machinery and keeps it in a good condition.
The worker is protected against sudden reduction in his income as in the case of piece rate.
Trade unions favour the system as calculations are simple.
As the worker is assured of a fixed income, he can adjust his expenditure to his income and maintain his standard of living.
There would be no jealousy among workers as all are paid equally, on the basis of time. In cases where it is not possible to measure the output of a worker, time wage is the only method that can be used.

## DISADVANTAGES OF TIME WAGE SYSTEM

The system gives little or no recognition to the efficiency of workers. No distinction is made between efficient and inefficient workers.

Strict supervision becomes inevitable, as the worker is not interested in increasing his output. This would raise the overhead costs.
Wages remain fixed whereas the speed of worker is not constant. Hence, wages per unit of output will vary considerably. This would come in the way of fixing selling price on the basis of cost of production.
No definite standard of promotion can be laid down. The effect of this system is definitely demoralizing.

## PIECE WAGE SYSTEM

The system that removes the basic defect of time wage system and gives recognition to the efficiency of the worker is the Piece Wage System. The worker is paid on the basis of amount of work or number of units turned out by him. The rate of wages per unit of output is fixed in advance.

## Piece Wage $=$ Time Allowed $\times$ Rate Per Hour

$$
\mathbf{E}=\mathbf{T A} \times \mathbf{R}
$$

Where, $\mathrm{E}=$ Earnings, $\mathrm{TA}=$ Time Allowed, $\mathrm{R}=$ Rate per hour
17 The system is particularly suited when (i) the output can be measured, (ii) when speed is more important consideration than quality, and (iii) when the continuous and uninterrupted supply of work is assured.

## ADVANTAGES OF PIECE WAGE SYSTEM

There is an incentive to work more, as the worker gets more wages for large output.
The cost of supervision is reduced, as the system encourages voluntary efforts. This would in turn reduce overhead charges.
The cost of production can be calculated more accurately, because the cost of labour per unit is fixed.
Method of production and quality of product are improved. This is because the workers demand materials free from defects. They take every care to keep the machinery in proper condition.
It attracts better workers to the firm.
Satisfied employees would not leave the firm and labour turnover rate is reduced.
Hard and regular work put in results in increased production as well as efficiency.
The total cost per unit is reduced as the fixed overhead charges are spread over larger number of units produced.

## dISADVANTAGES OF PIECE WAGE SYSTEM

In order to get maximum output, the worker neglects quality. As there is not guaranteed day wage, fresh workers have to suffer.
In his anxiety to produce more, the worker overstrains himself which affects his health.
Strict supervision is needed to control quality, which is sacrificed by the worker in hurry to produce more.
As there is an incentive to work hard, the worker tries to raise his production. The employer thinks that the workers are earning too much and will reduce rate of wages. This leads to conflict between employers and employees.
Different workers earn different amounts of wages. This leads to dissatisfaction among inefficient workers and there would be conflict among workers.
Detailed records of individual worker's daily output and his total earnings have to be maintained. This involves elaborate calculations and much clerical work will increase administration cost.

## 

|  |  | Piece Rare Syater |  |
| :---: | :---: | :---: | :---: |
| (1) |  <br>  | 113 |  <br>  <br>  |
| (2) |  <br>  | (2) |  pבymenl forect marker, |
| (1) | Under time me system, remunerilizan we fot diractly linked with produrivily, | (4) |  produclivily |
| (4) |  머 wher | [4] | Whater piece cale system there is nor <br>  |
| (5) |  <br>  | (5) |  |
|  |  suppary it. | (6) | Unticr [his is miat to wiopreate with the schertes. |
| [) |  | な |  <br>  |

## Example - 1

Standard time for a job in a factory is 8 hours. A worker is
paid at ₹ 10 per hour. Actual time taken is 6 hours. Calculate
the wages payable to the worker on: (1) Time basis and (2)
Piece basis.

## Solution

Here, Time Taken $=6$ hours
Time Allowed $=8$ hours and
Rate per hour $=₹ 10$
(1) Time Wages $=$ Time taken $\times$ Rate per hour

$$
=6 \text { hours } \times ₹ 10 \text { per hour }
$$

$=₹ 60$
(2) Piece Wages $=$ Time allowed $\times$ Rate per hour

$$
\begin{aligned}
& =8 \text { hours } \times ₹ 10 \text { per hour } \\
& =₹ \mathbf{8 0}
\end{aligned}
$$

## Example - 2

A workman takes 9 hours to complete a job on daily wages and 6 hours on a scheme of payment by results. His day rate is 25 paise an hour. The material cost of the product is ₹ 4 and the factory overheads are recovered at $150 \%$ of the total direct wages. Calculate the factory cost of the product under (1) Time basis and (2) Piece basis.

## Solution

Here, Time Taken $=6$ hours
Time Allowed $=9$ hours and
Rate per hour $=$ ₹ 0.25
(1) Time Wages $=$ Time taken $\times$ Rate per hour

$$
=6 \text { hours } \times ₹ 0.25 \text { per hour }
$$

$$
=₹ 1.50
$$

(2) Piece Wages $=$ Time allowed $\times$ Rate per hour

$$
\begin{aligned}
& =9 \text { hours } \times ₹ 0.25 \text { per hour } \\
& =₹ 2.25
\end{aligned}
$$

## Solution (Cont.)

Now, we have to find factory cost of the product.
Time basis (₹)
Piece basis (₹)
(1) Material
(2) Direct Wages
(3) Factory O/h
$(1.50 \times 150 \%)$
2.25
$(2.25 \times 150 \%)$
3.375
( $150 \%$ of Direct wages)
So, Factory Cost
7.75
9.625

## Example

A worker is allowed 9 hours to complete a job on time wages. He completes the job in 6 hours on piece wages. His time wage is ₹ 2 per hour.

Material cost of a product is ₹ 10 and factory overheads are recovered at $100 \%$ of the total direct wages. Calculate the factory cost of the product under:
(1) Time wage plan and (2) Piece wage plan

## Solution

Here, Time Taken $=6$ hours
Time Allowed $=9$ hours and
Rate per hour $=₹ 2$
(1) Time Wages $=$ Time taken $\times$ Rate per hour

$$
\begin{aligned}
& =6 \text { hours } \times ₹ 2 \text { per hour } \\
& =₹ \mathbf{1 2}
\end{aligned}
$$

(2) Piece Wages $=$ Time allowed $\times$ Rate per hour

$$
\begin{aligned}
& =9 \text { hours } \times ₹ 2 \text { per hour } \\
& =₹ \mathbf{1 8}
\end{aligned}
$$

## Solution (Cont.)

Now, we have to find factory cost of the product.
Time basis (₹)
Piece basis (₹)
(1) Material
(2) Direct Wages
(3) Factory O/h
$(12 \times 100 \%)$
12.00
$(18 \times 100 \%)$
18.00
( $100 \%$ of Direct wages)
So, Factory Cost
34.00
46.00

## INCENTIVE WAGE SYSTEM

There are some demerits of both time wage and piece wage systems. Hence, industrialists have been constantly striving to evolve a system which may combine the good points of both. The incentive wage plans blend the desirable features of both and at the same time avoid their demerits. They encourage the workers to increase their output and at the same time guarantee a minimum day wage.
The characteristics of such systems are as follows: (1) A standard task is set to be completed within a standard time allowed. If a worker reaches the target, he is paid some bonus in addition to wages. (2) The bonus paid to him is in proportion to the extra production of the worker. (3) If a worker is not able to complete the work in standard time, he gets minimum day wage. (4) The benefit of extra production is shared by both the employers and employees. (5) The systems are generally named after the persons who have desired them.

## ESSENTIALS OF A GOOD INCENTIVE PLAN

It must guarantee a minimum wage to a worker, irrespective of his quantum of work.
The complicated system fails to achieve its objective. Hence it must be a simple one so that the worker can understand it and calculate his own wages.
The wages earned by a worker must be in proportion to the quantity of work done by him.
The extra benefit to the worker must be made available to him immediately after the work is completed.
The task fixed for the worker to be achieved must be scientifically fixed.
The system should not be expensive, i.e. the cost increase should not exceed the benefit available to the employer.
The system should be just and equitable. The worker should not suffer when due to the fault of management or machine, he is not able to achieve the targeted production.
The system once introduced must be stable and must be tried for sufficiently long time.
An efficient worker should get returns for his efficiency and extra efforts.
The system should lead itself to the modern control systems, so that it may help implementation of standard costing and budgetary control.

## HALSEY PLAN

In this plan day-wage is guaranteed. A worker is paid at an hourly rate, for all the time during which he is working irrespective of the fact whether he completes the task or not. The standard output is first determined by the management which is based on past experience. If a worker completes his work in less than the standard time, he gets the wages for the hours worked and also a certain proportion of the time saved as measured by the hourly rate.

Mr. Halsey said that $50 \%$ bonus may be paid if the task is a difficult one and has been scientifically set. But $30 \%$ is enough when the standard is based on past experience only. This plan is also called Weir system in England because it was first used in England in Weir Engineering Works, Cotheart. The acceptance of the plan is voluntary for each worker.

## MERITS OF HALSEY PLAN

It is easy to introduce because standard time can be set only from the past experience.

Day wage is guaranteed whether task is finished or not.
There is no fear of cutting the wage rate because advantage from time saved is shared even by the employer.

There is no overstrain because the worker is not compelled to work fast.

## DEMERITS OF HALSEY PLAN

The standard task set is not based upon scientific study but is based on simply past experience. Thus it does not give equal opportunity to all workers to earn bonus. The task should be set after careful time and motion study.

The scheme of dividing benefit of time saved is not fair. The employer has no right to share the extra efforts of a worker.

The premium is calculated on each job separately. Hence the workers can work fast on certain jobs to get premium and in some other jobs he may work slowly because the day wage is guaranteed.

## CALCULATION OF WAGES

$$
\mathbf{E}=\mathbf{T} \times \mathbf{R}+\frac{50}{100}(\mathbf{T S} \times \mathbf{R})
$$

Where, E = Earnings
T = Time Taken
$\mathrm{R}=$ Rate per hour
$\mathrm{TS}=$ Time saved
Or Total Wages $=$ Wages for Actual Time Taken + Bonus
Where, Bonus $=1 / 2 \times$ Wage of time saved

## ROWAN PLAN

To remove the defects of Halsey Plan, James Rowan suggested another plan. All the points of Halsey Plan were kept intact except the method of calculating premium. Standard time is based on past experience. A day wage is guaranteed to all workers irrespective of the fact whether he finished the task or not. The rules of remuneration under the plan are as follows:

- The wages of time taken shall be increased by the same percentage as that by which the time set for the job has been reduced.'
- If the worker reduced time by $25 \%$, then the wages are increased by $25 \%$.


## CALCULATION OF WAGES

## Total wages $=$ Wages for Actual Time Taken + Bonus

Where, Bonus $=$ Actual Wages $\times$ Time Saved $/$ Time Allowed

$$
\begin{gathered}
=\mathrm{W} \times \frac{\mathrm{TS}}{\mathrm{TA}} \\
\mathbf{E}=(\boldsymbol{T} \times \boldsymbol{R})+\left(W \times \frac{T S}{T A}\right)
\end{gathered}
$$

## MERITS OF ROWAN PLAN

Under the Rowan Plan the workers are benefitted in the initial stages whereas Halsey Plan is less liberal in the beginning.
The majority of workers are of average ability and it is not possible for them to save more than two or three hours in a day and large number of workers are benefitted under the Rowan Scheme.
The remuneration is self-limiting under the scheme.
The maximum the worker can earn under the Rowan plan is double the guaranteed wage which is humanly impossible. Thus it offers protection to the employers against premium on account of the standard task being set too low.

## DEMERITS OF ROWAN PLAN

The system of calculating premium is very complicated.

The ordinary worker finds it difficult to understand it.
Thus the system is losing popularity among employees.

## TAYLOR'S DIFFERENTLAL PIECE RATE SYSTEM

This system was introduced by Dr. F. W. Taylor, the man who is regarded as the father of scientific management. The underlying principle is to pay a low piece rate for low production and higher piece rate for more production. By careful time and motion studies, he was able to find out the best method of doing any work and the minimum time required for doing it and was thus able to arrive at the time normally required by a worker for doing a given piece of work.
亩 He was thus able to get a standard task based upon scientific studies. To encourage the efficient workers he is paid a higher piece rate. If he fails to attain the standard he gets lower piece rate.
圈 Suppose, the standard task for a day is 10 units. The piece rate for that output or more may be ₹ 1 per unit and for production below the standard, the rate is only 75 paisa per units. Thus a worker producing 12 units gets ₹ 12.00 . But the worker producing 8 units gets only ₹ 6.00 .

## Example - 3

Standard task during the day is fixed at 15 units. If a worker produces 15 units or more, he gets wages ₹ 1.20 per unit and a worker who produces less, is paid at ₹ 1.00 per unit. If A produces 20 units and B produces 14 units, what would they get under Taylor's Differential Piece-Wage Plan?

## Solution

Here, Standard task $=15$ units
A produces $=20$ units and
B produces $=14$ units
Rate per unit for 15 units or more $=₹ 1.20$
Rate per unit for less than 15 units $=₹ 1.00$
Wages $=$ No. of units produces $\times$ Rate per unit
For worker $\mathrm{A}=20$ units $\times ₹ 1.20$ per unit

$$
=₹ 24
$$

For worker $B=14$ units $\times ₹ 1.00$ per unit

$$
=₹ 14
$$

## Example

Compute the total wages of two workers X and Y from the following data:
(1) Standard time $=100$ units per hour
(2) Ordinary Time Rate $=₹ 4$ per hour
(3) Differential Piece Rate $=80 \%$ of rate for production below standard

$$
=120 \% \text { of piece rate for production at or above standard }
$$

On a working day of 8 hours, X produced 750 and $\mathrm{Y} 1,000$ units.

## Solution

Here, Standard task $=100$ units per hour, For 8 hours a day $=800$ units X produces $=750$ units and Y produces $=1,000$ units
Now, Rate per hour $=₹ 4.00$, so rate per unit $=\frac{\text { Rate Per hour }}{\text { Units per hour }}=\frac{4}{100}=₹ 0.04$ Rate per unit for 800 units or more $=₹ 0.048(0.04 \times 120 \%)$
Rate per unit for less than 800 units $=₹ 0.032(0.04 \times 80 \%)$
Wages $=$ No. of units produces $\times$ Rate per unit
For worker $X=750$ units $\times ₹ 0.032$ per unit

$$
=₹ 24
$$

For worker $\mathrm{Y}=1,000$ units $\times ₹ 0.048$ per unit

$$
=₹ 48
$$

## Example - 19

Mira, Pinky and Raju three are labourers in a factory. Standard Time
allowed for a job is 25 hours. Wage rate per hour is ₹ 40 . To finish the
job Mira takes 15 hours, Pinky takes 20 hours and Raju takes 25 hours.

What wages will have to be paid to each one as per the following
methods: (1) Piece Wage System, (2) Halsey Wages System and (3)
Rowan Wages System

## Solution

Here, Time Allowed $=25$ hours
Time Taken by Mira $=15$ hours, Pinky $=20$ hours and Raju $=25$ hours
Rate per hour $=₹ 40$
Time Saved $=$ Time Allowed - Time Taken
Mira $=10(25-15)$ hours, Pinky $=5(25-20)$ hours and Raju $=0(25-25)$ hours
(1) Piece Wages $=$ Time allowed $\times$ Rate per hour

$$
=25 \text { hours } \times ₹ 40 \text { per hour }
$$

$$
=₹ 1,000
$$

Here, time allowed are same for all workers. So, as per piece wage system Wages of each worker is ₹ $\mathbf{1 , 0 0 0}$.

## Solution (Cont.)

(2) Wages as per Halsey Plan $=(T \times R)+50 \%(T S \times R)$

For Mira $=(15$ hours $\times ₹ 40)+50 \%(10$ hours $\times ₹ 40)$

$$
=₹ 600+50 \% \text { (₹ 400) }
$$

$$
\text { = ₹ } 800
$$

For Pinky $=(20$ hours $\times ₹ 40)+50 \%(5$ hours $\times ₹ 40)$

$$
=₹ 800+50 \% \text { (₹ 200) }
$$

$$
\text { = ₹ } 900
$$

For Raju $=(25$ hours $\times ₹ 40)+50 \%(0$ hours $\times ₹ 40)$

$$
\text { = ₹ } 1,000
$$

## Solution (Cont.)

(3) Wages as per Rowan Plan $=(T \times R)+\left(W \times \frac{T S}{T A}\right)$

For Mira $=(15$ hours $\times ₹ 40)+\left(\mathrm{W} \times \frac{10}{25}\right)$

$$
\begin{aligned}
& =₹ 600+(₹ 600 \times 0.4) \\
& =₹ 600+₹ 240
\end{aligned}
$$

For Pinky $=(20$ hours $\times ₹ 40)+\left(\mathrm{W} \times \frac{5}{25}\right)$

$$
\begin{aligned}
& =₹ 800+(₹ 800 \times 0.2) \\
& =₹ 800+₹ 160 \quad=₹ 960
\end{aligned}
$$

For Raju $=(25$ hours $\times ₹ 40)+\left(\mathrm{W} \times \frac{00}{25}\right)$

$$
=₹ 1,000+\text { NIL } \quad=₹ \mathbf{1 , 0 0 0}
$$

## Example - 4 (A)

The following particulars apply to a job Standard time 50 hours, time taken 40 hours, material cost of a product is ₹ 150 . Factory cost ₹ 300 .

Factory overheads are recovered at ₹ 1.50 per hour of actual time
taken. Calculate direct wages and rate of wage per hour under Halsey
Plan.

## Solution

Here, Factory cost are given so from that we can find out Direct wages.

|  | ₹ |
| :--- | :---: |
| (1) Material | 150 |
| (2) Direct Wages | 90 |
| (3) Factory O/h $(1.50 ₹ \times 40$ hours taken $)$ | 60 |
| Factory Cost | $\mathbf{3 0 0}$ |

## Solution (Cont.)

Now, from the total wages we can find wage rate per hour by using Halsey Plan. Wages as per Halsey Plan $=(T \times R)+50 \%(T S \times R)$

$$
\begin{array}{cl}
₹ 90 & =(40 \text { hours } \times \mathrm{R})+50 \%(10 \text { hours } \times \mathrm{R}) \\
90 & =40 \mathrm{R}+50 \%(10 \mathrm{R}) \\
90 & =40 \mathrm{R}+5 \mathrm{R} \\
90 & =45 \mathrm{R}
\end{array}
$$

So, $\mathbf{R}=\mathbf{₹} \mathbf{2}$ per hour

Ans.: Wages under Halsey Plan is ₹ 90 and Wage rate per hour is ₹ 2.

## Example - 4 (B)

The standard time for a particular job is 40 hours and actual time taken
is 30 hours. Basic wage rate is ₹ 8 and dearness allowance is ₹ 2 per
hour. Calculate total wages and effective rate of wage per hour under
Rowan plan. Bonus is calculated on basic plus D.A. rate of wage per hour.

## Solution

Here, Time Allowed $=40$ hours, Time taken $=30$ hours
Rate per hour $=₹ 8$ basic $+₹ 2$ D.A. $=₹ 10$
Time Saved $=$ TA $-\mathrm{T}=40-30=10$ hours
Wages as per Rowan Plan $=(T \times R)+\left(W \times \frac{T S}{T A}\right)$

$$
\begin{aligned}
& =(30 \text { hours } \times ₹ 10)+\left(\mathrm{W} \times \frac{10}{40}\right) \\
& =₹ 300+(₹ 300 \times 0.25) \\
& =₹ 300+₹ 75 \quad=₹ 375
\end{aligned}
$$

Effective Wage rate per hour $=$ Total wages $\div$ Time Taken

$$
=₹ 375 \div 30 \text { hours } \quad=₹ \mathbf{1 2 . 5} \text { per hour }
$$

## Example

Find out total incomes of Jay under following circumstances:
(1) Rowan Premium Plan.
(2) $40 \%$ Bonus under Halsey Premium Plan
a) Rate per hour 60 paise
b) Standard time of preparing 1 dozen units 2 hours.

Actual time taken for preparing 25 dozen units 40 hours.
If a price of material is ₹ 20 and factory overhead is recovered at $150 \%$ of direct wages, calculate factory cost also.

## Solution

Here, Time Allowed $=1$ dozen unit 2 hours, So for 25 dozen units 50 hours, Time taken $=40$ hours
Rate per hour $=₹ 0.60$ Time Saved $=\mathrm{TA}-\mathrm{T}=50-40=10$ hours

Wages as per Rowan Plan $=(\mathrm{T} \times \mathrm{R})+\left(\mathrm{W} \times \frac{\mathrm{TS}}{\mathrm{TA}}\right)$
$=(40$ hours $\times ₹ 0.60)+\left(\mathrm{W} \times \frac{10}{50}\right)$
$=$ ₹ $24+(₹ 24 \times 0.2)$
= ₹ $24+₹ 4.80$
$=₹ 28.80$

## Solution (Cont.)

$$
\begin{aligned}
\text { Wages as per Halsey Plan } & =(\mathrm{T} \times \mathrm{R})+40 \%(\mathrm{TS} \times \mathrm{R}) \\
& =(40 \text { hours } \times 0.60)+40 \%(10 \text { hours } \times 0.60) \\
& =₹ 24+40 \%(₹ 6) \\
& =₹ 24+₹ 2.40 \\
& =₹ 26.40
\end{aligned}
$$

## Solution (Cont.)

Now, we have to find factory cost of the product.

Rowan Plan (₹)
Halsey Plan (₹)
(1) Material
(2) Direct Wages
(3) Factory O/h
(150\% of Direct wages)
So, Factory Cost
92.00

## Example - 5

Calculate the normal and overtime wages payable to a workman from the following data:

Days
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Hours worked
8 hours
10 hours
9 hours
11 hours
9 hours
4 hours
51 hours

Normal working hours
Normal rate
Overtime rate
OR

8 hours per day
₹ 0.50 per hour
upto 9 hours in a day, at single rate and over 9 hours in a day at double rate upto 48 hours in a week, at single rate and over 48 hours at double rate, whichever is beneficial to the workman.

|  | Solution |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - 3 | Calculation of Normal and Overtime Hours |  |  |  |  |
| - | Days | Actual Hours worked | Normal Working Hours | Overtime Hours |  |
| - |  |  |  | Single Rate | Double Rate |
| $-3$ | Monday | 8 | 8 | -- | -- |
| - | Tuesday | 10 | 8 | 1 | 1 |
| 3 | Wednesday | 9 | 8 | 1 | -- |
|  | Thursday | 11 | 8 | 1 | 2 |
| 0 | Friday | 9 | 8 | 1 | -- |
|  | Saturday | 4 | 4 | -- | -- |
| $\underline{0}$ | Total | 51 | 44 | 4 | 3 |

## Solution (Cont)

Normal Wages $=$ Normal Working Hours $\times$ Normal rate per hour

$$
=44 \text { hours } \times ₹ 0.50 \quad=₹ 22.00
$$

Overtime wages $=$ At single rate 4 hours $\times ₹ 0.50=₹ 2.00$
At double rate 3 hours $\times ₹ 1.00=₹ 3.00$
Total Wages $=₹ 27.00$
OR
Wages under second alternative:
Normal Wages for 48 hours $=48$ hours $\times ₹ 0.50=₹ 24.00$
Overtime wages for 3 hours $=3$ hours $\times ₹ 1.00=₹ 3.00$
Total Wages $=₹ 27.00$
Here, under both alternatives workers gets $₹ \mathbf{2 7 . 0 0}$ wages.

## Example - 6

From the following information of a factory, find out the amount of net wages payable in cash and also find out the cost of wages for March, 2017.
(1) Salary per month
(2) Dearness allowances
(3) Total amount deposited to P.F.
(4) Total amount deposited to E.S.I.
(5) Expenses on amenities to employees
(6) House rent recovered from 25 employees at the rate of ₹ 200 per month.

Employer's contribution to P.F. is at equal rate with employee's contribution, while the ratio of employer's and employee's share into the contribution to E.S.I. is $2: 1$.

## Solution

## Statement Showing Net wages payable in Cash

| Particulars | ₹ |
| :---: | :---: |
| (1) Salary | 60,000 |
| (2) Dearness allowance (125\% of basic) $(60,000 \times 125 \%)$ | 75,000 |
| Total wages | 1,35,000 |
| Less: Deductions |  |
| (1) Employee's Contribution to P.F. $(12,000 \times 1 / 2)$ | 6,000 |
| (2) Employee's Contribution to E.S.I. $(4,500 \times 1 / 3)$ | 1,500 |
| (3) Recovery of House rent ( $200 \times 25$ ) | 5,000 |
| Net Wages payable in Cash | 1,22,500 |

## Solution (Cont.)

## Statement Showing Total cost of wages

| Particulars | $₹$ |
| :--- | ---: |
| (1) Salary | 60,000 |
| (2) Dearness allowance (125\% of basic) $(60,000 \times 125 \%)$ | 75,000 |
| (3) Employer's Contribution to P.F. $(12,000 \times 1 / 2)$ | 6,000 |
| (4) Employer's Contribution to E.S.I. $\left(4,500 \times \frac{2}{3}\right)$ | 3,000 |
| (5) Expenses on amenities to employees | 4,000 |
| Total cost of Wages | $\mathbf{1 , 4 8 , 0 0 0}$ |

## Example - 43 (A)

Jay has taken 40 hours to complete a job. The wage rate per
hour is ₹ 8 . If he has received ₹ 384 as total wages according
to Rowan Plan, what would be the amounts of wages earned
by him according to Halsey Plan and Piece wage plan?

## Solution

Here, Time taken $=40$ hours, Rate per hour $=₹ 8$
Wages as per Rowan plan =₹ 384
Time Allowed $=(?)$, Time Saved $=(?)$
Wages as per Rowan Plan $=(\mathrm{T} \times \mathrm{R})+\left(\mathrm{W} \times \frac{\mathrm{TS}}{\mathrm{TA}}\right)$
$₹ 384=(40$ hours $\times ₹ 8)+\left(W \times \frac{\mathrm{TS}}{\mathrm{TA}}\right)$
₹ $384=$ ₹ $320+\left(₹ 320 \times \frac{\mathrm{TS}}{\mathrm{TA}}\right)$

$$
₹ 384-₹ 320 \quad=₹ 320 \times \frac{\mathrm{TS}}{\mathrm{TA}}
$$

$$
\frac{64}{320}=\frac{T S}{T A}
$$

$$
\text { So, } \frac{\mathrm{TS}}{\mathrm{TA}}=\frac{1}{5}
$$

## Solution (Cont)

Now, Time Allowed $=5$, Time Saved $=1$
Here, Time Taken $=40$ hours.
Time Taken $=$ Time Allowed - Time Saved $=5-1=4$.
So, when time taken $=4$, it is 40 hours
if time allowed $=5$, then it is $\mathbf{5 0}$ hours and time saved $=1$, so it is $\mathbf{1 0}$ hours.
(1) Piece Wage Plan $=$ Time Allowed $\times$ Wage rate per hour

$$
=50 \text { hours } \times ₹ 8 \quad=₹ 400
$$

(2) Halsey Plan $=(T \times R)+50 \%(T S \times R)$

$$
=(40 \text { hours } \times ₹ 8)+50 \%(10 \text { hours } \times ₹ 8)
$$

$$
=₹ 320+50 \% \text { (₹ } 80 \text { ) }
$$

$$
=₹ 320+₹ 40
$$

$$
=₹ 360
$$

## Labour Turnover

$>$ Labourers leave the firm due to a variety of reasons. They may be dismissed or retrenched. The rate of such displacement of labour is known as labour turnover. In short, labour turnover is measured as the ratio of the number of the workers leaving firm in a period to the average number on the payroll. If 150 workers leave the firm in a year and average number of workers on roll is 1,500 , then the labour turnover is $10 \%$ per annum. It is rate of instability.
$>$ The higher this rate, the greater will be labour cost. New workers are to be recruited, training is to be imparted to them and additional loss in the form of extra wastage by untrained workers in the beginning has to be borne by the firm. Hence, the firm should try to keep the labour turnover rate to the minimum. A study of the reasons for labour turnover must be undertaken, which will enable the management to reduce the labour turnover rate.

## Effects of Labour Turnover

$>$ From the viewpoint of worker, it is harmful as it reduces his efficiency and income both.
$>$ High rate of labour turnover is harmful to the employer in many ways. New employees are generally less efficient. Hence both quantity and quality of production decline.
$>$ Recruitment of new employees entails certain expenses.
$>$ High rate of labour turnover suggests that human wealth of the country is not being utilized properly.

## Methods of Computing Labour Turnover Rate

$>$ Separation Method: Under this method, labour turnover is computed by dividing the total number of workers who left by the average number of workers on the payroll.
$>$ Labour Turnover Rate $=\frac{\text { Number of separations in a period }}{\text { Average number on roll in a period }} \times 100$
Where, Average number $=\frac{\text { Number in beggining }+ \text { Number at end }}{2}$
$>$ It must be noted that all workers leaving weather voluntarily due to better prospects or marriage or due to dissatisfaction with wages or superiors or dismissed or retrenched by the firm must be included. Even those who retire due to age or are laid off due to lack of work must also be included.

## Methods of Computing Labour Turnover Rate

$>$ Replacement Method: It is the percentage of new replacements during a given period to the average number of workers on payroll. This method takes into account the replacement, irrespective of the number of workers who have left. Secondly, if new workers are recruited due to the expansion, they are not to be included.
$>$ Labour Turnover Rate $=\frac{\text { Number of Replacements in a period }}{\text { Average number on roll in a period }} \times 100$

## Methods of Computing Labour Turnover Rate

$>$ Joint or Flux Method: It is a combined method in which the total
number of workers who have left the firm (i.e., separations) and number of workers who have joined the firm (i.e., replacements) are compared with the average number on payroll.
$>$ Labour Turnover Rate $=\frac{\text { No.of Separations }+ \text { No.of Replacements }}{\text { Average number on roll in a period }} \times 100$

## Equivalent Annual Rate of Labour Turnover

$>$ It is the rate of labour turnover for a month or a part of
it compared to the annual rate. It is computed as
follows:

$$
>\mathbf{E A R}=\frac{\text { Labour Turnover Rate }}{\text { No.of days in a month }} \times 365
$$

46 (B) From the following information of Naman Ltd. calculate Labour Turnover Rate on the basis of -
(1) Separation Method
(2) Replacement Method
(3) Flux method.

No. of workers at the beginning of the year 7,600
No. of workers at the end of the year 8,400
No. of workers resigned during the year 80
No. of workers retired during the year320

No. of workers newly appointed during the year $\quad 1,500$ (of which 300 workers were taken under the expansion plan).
[Guj. Uni., S.Y., Noy 2019]

## Solution

## Labour Turnover Rate

(1) By Separation Method $=\frac{\text { Number of Separations in a period }}{\text { Average number on roll in a period }} \times 100$

$$
=\frac{400}{8,000} \times 100 \quad=\mathbf{5 \%}
$$

Where, No. of Separations $=$ No. of workers resigned + retired + dismissed

$$
=80+320 \quad=\mathbf{4 0 0}
$$

Average workers $=\frac{\text { Workers at beginning }+ \text { Workers at the end }}{2}$

$$
\begin{aligned}
& =\frac{7,600+8,400}{2} \\
& =\mathbf{8 , 0 0 0}
\end{aligned}
$$

## Solution (Cont)

## Labour Turnover Rate

(2) By Replacement Method $=\frac{\text { Number of Replacements in a period }}{\text { Average number on roll in a period }} \times 100$

$$
=\frac{1,200}{8,000} \times 100 \quad=\mathbf{1 5 \%}
$$

Where, No. of Replacements $=$ No. of newly appointed - Workers under expansion

$$
=1,500-300 \quad=\mathbf{1 , 2 0 0}
$$

Average workers $=\frac{\text { Workers at beginning }+ \text { Workers at the end }}{2}$

$$
\begin{aligned}
& =\frac{7,600+8,400}{2} \\
& =\mathbf{8 , 0 0 0}
\end{aligned}
$$

## Solution (Cont)

(3) By Flux Method $=\frac{\text { No.of Separation }+ \text { No.of Replacements }}{\text { Average number on roll in a period }} \times 100$

$$
\begin{aligned}
& =\frac{80+320+1,200}{8,000} \times 100 \\
& =\frac{1,600}{8,000} \times 100 \\
& =\mathbf{2 0 \%}
\end{aligned}
$$

11. The following information is extracted from the record of Bharat \& Company Ltd. for the month of March:
Number of employee at the beginning of the month ..... 950
Number of employees at the end of the month ..... 1,050
Number of employees resigned ..... 10
Number of employees discharged ..... 30
Number of employees replaced in the vacancies
20
20
Number of employees appointed due to expansion scheme ..... 120

Calculate the labour turnover rate and equivalent annual rate under different methods.

## Solution

## Labour Turnover Rate

(1) By Separation Method $=\frac{\text { Number of Separations in a period }}{\text { Average number on roll in a period }} \times 100$

$$
=\frac{40}{1,000} \times 100 \quad=\mathbf{4 \%}
$$

Where, No. of Separations $=$ No. of workers resigned + discharged

$$
=10+30 \quad=40
$$

Average workers $=\frac{\text { Workers at beginning }+ \text { Workers at the end }}{2}$

$$
=\frac{950+1,050}{2}
$$

$$
=1,000
$$

## Solution (Cont)

## Labour Turnover Rate

(2) By Replacement Method $=\frac{\text { Number of Replacements in a period }}{\text { Average number on roll in a period }} \times 100$

$$
\begin{aligned}
& =\frac{20}{1,000} \times 100 \\
& =\mathbf{2 \%}
\end{aligned}
$$

(3) By Flux Method $=\frac{\text { No.of Separation }+ \text { No.of Replacements }}{\text { Average number on roll in a period }} \times 100$

$$
\begin{aligned}
& =\frac{10+30+20}{1,000} \times 100 \\
& =\mathbf{6 \%}
\end{aligned}
$$

## Solution (Cont)

## Equivalent Annual Rate

$$
\mathrm{EAR}=\frac{\text { Labour Turnover Rate }}{\text { No.of Days in a month }} \times 365
$$

(1) By Separation Method $=\frac{4}{31} \times 365$

$$
=47.10 \%
$$

(2) By Replacement Method $=\frac{2}{31} \times 365$

$$
=23.55 \%
$$

(3) By Flux Method $=\frac{6}{31} \times 365$

$$
=70.65 \%
$$

9 Particulars regarding the DGP Co. are as under:
No. of employess at the beginning of the year
No. of employes at the end of the year
No. of. employes resigned during the year
No. of. employees dismissed during the year
No of. employees replaced during the year
Labour turnover rate as per flux method is $10 \%$ Find out the number of employees dismissed during the year. [Sau. Uni., T.Y., April, 198]

## Solution

(1) By Flux Method $=\frac{\text { Number of Separations }+ \text { Number of Replacements }}{\text { Average number on roll in a period }} \times 100$

$$
10=\frac{\text { No.of Separation }+17}{500} \times 100
$$

No. of Separation $=\left(\frac{500 \times 10}{100}\right)-17=50-17=33$
Where, Average no. on roll $=\frac{\text { Workers at beginnig }+ \text { Workers at the end }}{2}$

$$
=\frac{508+492}{2} \quad=\mathbf{5 0 0}
$$

$>$ No. of Separations $=$ No. of workers resigned + dismissed

$$
33=8+\text { Dismissed }
$$

So, No. of workers dismissed $=33-8$
$=25$

## Example - 10

The number of workers in Shyam Ltd. was 765 on $1^{\text {st }}$ January, 2020.
The number of workers left the factory were 105 upto $30^{\text {th }}$ June, 2020 and new employees recruited were 75. Between $1^{\text {st }}$ July, 2020 and $31^{\text {st }}$ December, 2020, 90 workers left the factory and 80 workers were recruited (out of which 14 workers were recruited due to expansion scheme).

Calculate labour turnover rate by replacement method for first six months and by separation method for the remaining six months.

## Solution

## Labour Turnover Rate (For first six months)

(1) By Replacement Method $=\frac{\text { Number of Replacements in a period }}{\text { Average number on roll in a period }} \times 100$

$$
=\frac{75}{750} \times 100 \quad=\mathbf{1 0 \%}
$$

Where, Average no. on roll $=\frac{\text { Workers at beginnig }+ \text { Workers at the end }}{2}$

$$
=\frac{765+735}{2} \quad=750
$$

( Number of workers at the end $=$ Workers at beginning - left + recruited

$$
=765-105+75=\mathbf{7 3 5}
$$

## Solution (Cont.)

## Labour Turnover Rate (For last six months)

(2) By Separation Method $=\frac{\text { Number of Separations in a period }}{\text { Average number on roll in a period }} \times 100$

$$
=\frac{90}{730} \times 100 \quad=\mathbf{1 2 . 3 3 \%}
$$

Where, Average no. on roll $=\frac{\text { Workers at beginnig }+ \text { Workers at the end }}{2}$

$$
=\frac{735+725}{2} \quad=730
$$

圊 Number of workers at the end $=$ Workers at beginning - left + recruited

$$
=735-90+80 \quad=\mathbf{7 2 5}
$$

